Trong không gian Oxyz, cho điểm A(1;-1;3) và hai đường thẳng

Câu hỏi :

Trong không gian Oxyz, cho điểm \[A\left( {1; - 1;3} \right)\] và hai đường thẳng \({d_1}:\frac{{x - 4}}{1} = \frac{{y + 2}}{4} = \frac{{z - 1}}{{ - 2}}\), \({d_2}:\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}\). Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng \[{d_1}\] và cắt đường thẳng \[{d_2}\].


A. \(d:\frac{{x - 1}}{4} = \frac{{y + 1}}{1} = \frac{{z - 3}}{4}\).


B. \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{{z - 3}}{3}\).

C. \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\).       

D. \(d:\frac{{x - 1}}{{ - 2}} = \frac{{y + 1}}{2} = \frac{{z - 3}}{3}\).

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Gọi \(M = d \cap {d_2}\) ta có \({d_2}:\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - t\\z = 1 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right) \Rightarrow M\left( {t + 2; - t - 1;t + 1} \right)\).

Đường thẳng d nhận \(\overrightarrow {AM} = \left( {t + 1; - t;t - 2} \right)\) là một VTCP.

Đường thẳng \({d_1}\) có một VTCP là \(\overrightarrow u = \left( {1;4; - 2} \right)\)

Ta có:

\(d \bot {d_1} \Leftrightarrow \overrightarrow {AM} .\overrightarrow u = 0 \Leftrightarrow \left( {t + 1} \right) - 4t - 2\left( {t - 2} \right) = 0 \Leftrightarrow t = 1 \Rightarrow \overrightarrow {AM} = \left( {2; - 1; - 1} \right)\).

Đường thẳng d đi qua \(A\left( {1; - 1;3} \right)\) và nhận \(\overrightarrow {AM} = \left( {2; - 1; - 1} \right)\) là một VTCP

\( \Rightarrow d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\).

Copyright © 2021 HOCTAP247