Cho các hàm số y=f(x), y=f(f(x)), y=f(4-2x) có đồ thị lần lượt là

Câu hỏi :

Cho các hàm số \(y = f\left( x \right),{\rm{ }}y = f\left( {f\left( x \right)} \right),{\rm{ }}y = f\left( {4 - 2x} \right)\) có đồ thị lần lượt là \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right)\). Đường thẳng \(x = 1\) cắt \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right)\) lần lượt tại M, N, P. Biết tiếp tuyến của \(\left( {{C_1}} \right)\) tại M có phương trình là \(y = 3x - 1\), tiếp tuyến của \(\left( {{C_2}} \right)\) tại N có phương trình là \(y = x + 1\). Phương trình tiếp tuyến của \(\left( {{C_3}} \right)\) tại P

A. \(y = - 2x - 4\).     

B. \(y = - \frac{2}{3}x - \frac{8}{3}\).       

C. \(y = - \frac{2}{3}x + \frac{8}{3}\).               

D. \(y = - 2x + 4\).

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Tiếp tuyến của \[\left( {{C_1}} \right)\] tại M có phương trình là \(d:y = f'\left( 1 \right).\left( {x - 1} \right) + f\left( 1 \right)\).

Bài ra ta có \(d:y = 3x - 1 \Rightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 3\\f\left( 1 \right) - f'\left( 1 \right) = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}f'\left( 1 \right) = 3\\f\left( 1 \right) = 2\end{array} \right.\)

Từ \(y = f\left( {f\left( x \right)} \right) \Rightarrow y' = f'\left( x \right).f'\left( {f\left( x \right)} \right)\).

Tiếp tuyến của \(\left( {{C_2}} \right)\) tại N có phương trình là

\(d':y = f'\left( 1 \right).f'\left( {f\left( 1 \right)} \right).\left( {x - 1} \right) + f\left( {f\left( 1 \right)} \right) \Rightarrow y = 3'\left( 2 \right).\left( {x - 1} \right) + f\left( 2 \right)\).

Bài ra \(d:y = x + 1 \Rightarrow \left\{ \begin{array}{l}3f'\left( 2 \right) = 1\\f\left( 2 \right) - 3f'\left( 2 \right) = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}f'\left( 2 \right) = \frac{1}{3}\\f\left( 2 \right) = 2\end{array} \right.\)

Từ \(y = f\left( {4 - 2x} \right) \Rightarrow y' = - 2f'\left( {4 - 2x} \right)\).

Phương trình tiếp tuyến của \(\left( {{C_3}} \right)\) tại P\[y = - 2f'\left( 2 \right).\left( {x - 1} \right) + f\left( 2 \right)\]

\[ \Rightarrow y = - 2.\frac{1}{3}\left( {x - 1} \right) + 2 \Rightarrow y = - \frac{2}{3}x + \frac{8}{3}\].

Copyright © 2021 HOCTAP247