A
Đáp án A
Chọn hệ trục tọa độ như hình vẽ
Parabol có dạng \(y = a{x^2}\), do \(\left( P \right)\) đi qua điểm \(\left( {6;18} \right) \Rightarrow a = \frac{1}{2}\).
Diện tích thiết diện của cổng trào là: \({S_0} = \int\limits_{ - 6}^6 {\left( {18 - \frac{{{x^2}}}{2}} \right)dx} = 144\)
Để diện tích 3 phần bằng nhau thì diện tích mỗi phần là \(\frac{{{S_0}}}{3} = 48\).
Gọi \(B\left( {b;\frac{{{b^2}}}{2}} \right);{\rm{ }}D\left( {d;\frac{{{d^2}}}{2}} \right)\), khi đó \(\frac{{AB}}{{CD}} = \frac{b}{d}\)
Ta có: \(\int\limits_0^b {\left( {\frac{{{b^2}}}{2} - \frac{{{x^2}}}{2}} \right)dx} = 24 \Leftrightarrow \left. {\left( {\frac{{{b^2}x}}{2} - \frac{{{x^3}}}{6}} \right)} \right|_0^b = 24 \Rightarrow {b^3} = 72\).
Tương tự ta có \(\int\limits_0^d {\left( {\frac{{{d^2}}}{2} - \frac{{{x^2}}}{2}} \right)dx} = 48 \Rightarrow {d^3} = 144\) \( \Rightarrow \frac{{AB}}{{CD}} = \frac{1}{{\sqrt[3]{2}}}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247