A
Đáp án A
Phương trình mặt phẳng \[\left( {ABC} \right):\frac{x}{2} + \frac{y}{4} + \frac{z}{6} = 1 \Leftrightarrow 6x + 3y + 2z - 12 = 0\].
Bài ra N là điểm trên tia OM sao cho \(OM.ON = 12\).
Phân tích \(\overrightarrow {OM} = k.\overrightarrow {ON} \) với \(k = \frac{{OM}}{{ON}} = \frac{{\frac{{12}}{{ON}}}}{{ON}} = \frac{{12}}{{O{N^2}}} \Rightarrow \overrightarrow {OM} = \frac{{12}}{{O{N^2}}}.\overrightarrow {ON} \)
\( \Rightarrow M\left( {\frac{{12x}}{{{x^2} + {y^2} + {z^2}}};\frac{{12y}}{{{x^2} + {y^2} + {z^2}}};\frac{{12z}}{{{x^2} + {y^2} + {z^2}}}} \right)\) với \(N\left( {x;y;z} \right)\).
Mặt khác \(M \in \left( {ABC} \right) \Rightarrow 6.\frac{{12x}}{{{x^2} + {y^2} + {z^2}}} + 3.\frac{{12y}}{{{x^2} + {y^2} + {z^2}}} + 2.\frac{{12z}}{{{x^2} + {y^2} + {z^2}}} - 12 = 0\)
\( \Leftrightarrow 6x + 3y + 2z - \left( {{x^2} + {y^2} + {x^2}} \right) = 0 \Leftrightarrow {\left( {x - 3} \right)^2} + {\left( {y - \frac{3}{2}} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{49}}{4}\).
Vậy N luôn thuộc mặt cầu cố định \[\left( S \right):{\left( {x - 3} \right)^2} + {\left( {y - \frac{3}{2}} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{49}}{4}\].
Mặt cầu này có tâm \[I\left( {3;\frac{3}{2};1} \right)\] và bán kính \[R = \frac{7}{2}\].
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247