Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng

Câu hỏi :

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng SA và mặt phẳng đáy bằng

A. \(45^\circ \)            

B. \(75^\circ \)            

C. \(30^\circ \)            

D. \(60^\circ \)

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng (ảnh 1)

Gọi O là tâm hình vuông.

Suy ra AO là hình chiếu vuông góc của SA lên mặt phẳng \(\left( {ABC{\rm{D}}} \right)\).

Vậy góc giữa đường thẳng SA và mặt phẳng \(\left( {ABC{\rm{D}}} \right)\)\(\widehat {SAO}\).

Tam giác SAO vuông tại O

\(\cos \widehat {SAO} = \frac{{AO}}{{SA}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{{a\sqrt 2 }} = \frac{1}{2} \Rightarrow \widehat {SAO} = 60^\circ \).

Copyright © 2021 HOCTAP247