Cho hàm số f(x) liên tục trên R và f(x)dx=10 , thì f(2x)dx bằng

Câu hỏi :

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\)\(\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = 10\), thì \(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} \) bằng

A. 30                         

B. 20                         

C. 10                         

D. 5

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Đặt \(t = 2{\rm{x}} \Rightarrow dt = 2{\rm{dx}}\). Đổi cận \(x = 0 \Rightarrow t = 0,{\rm{ }}x = 3 \Rightarrow t = 6\).

\(\int\limits_0^3 {f\left( {2{\rm{x}}} \right)d{\rm{x}}} = \frac{1}{2}\int\limits_0^6 {f\left( t \right)dt} = \frac{1}{2}\int\limits_0^6 {f\left( x \right)d{\rm{x}}} = \frac{1}{2}.10 = 5\).

Copyright © 2021 HOCTAP247