Cho hàm số f(x)ln(x^2+1)/x thỏa mãn f'(1)=aln2+b với a,b thuộc Z .

Câu hỏi :

Cho hàm số \(f\left( x \right) = \frac{{\ln \left( {{x^2} + 1} \right)}}{x}\) thỏa mãn \(f'\left( 1 \right) = a\ln 2 + b\) với \(a,b \in \mathbb{Z}\). Giá trị của \(a + b\) bằng

A. 1                          

B. 0                          

C. 2                           

D. \( - 1\)

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có: \(f'\left( x \right) = \frac{{\frac{{2{\rm{x}}}}{{{x^2} + 1}}.x - x.\ln \left( {{x^2} + 1} \right)}}{{{x^2}}} = \frac{{2{{\rm{x}}^2} - x\left( {{x^2} + 1} \right)\ln \left( {{x^2} + 1} \right)}}{{{x^2}\left( {{x^2} + 1} \right)}}\).

Từ đây ta suy ra \(f'\left( 1 \right) = \frac{{2 - 2\ln 2}}{2} = - \ln 2 + 1 \Rightarrow a = - 1,b = 1 \Rightarrow a + b = 0\).

Copyright © 2021 HOCTAP247