Có 9 tấm thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên ra 2 tấm thẻ bất kỳ. Tính xác suất để

Câu hỏi :

Có 9 tấm thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên ra 2 tấm thẻ bất kỳ. Tính xác suất để tích của hai số trên 2 tấm thẻ đã lấy là một số chẵn.

A. \(\frac{{13}}{{18}}\)                             

B. \(\frac{1}{6}\)       

C. \(\frac{5}{9}\)    

D. \(\frac{5}{{18}}\)

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Gọi \(\Omega \) là số cách lấy ra 2 tấm thẻ trong 9 số ta có: \(\left| \Omega \right| = C_9^2 = 36\)

Gọi A là biến cố “tích của 2 số trên 2 tấm thẻ là số chẵn” ta xét 2 trường hợp.

TH1: Cả 2 tấm thẻ đều mang số chẵn. Vì có 4 số thẻ mang số chẵn nên có \(C_4^2 = 6\).

TH2: Có một tấm thẻ mang số chẵn và một tấm thẻ mang số lẻ có: \(C_4^1.C_5^1 = 20\).

Vậy xác suất cần tính là: \(P\left( A \right) = \frac{{\left| {{\Omega _A}} \right|}}{{\left| \Omega \right|}} = \frac{{6 + 20}}{{36}} = \frac{{13}}{{18}}\).

Copyright © 2021 HOCTAP247