D
Đáp án D
Ta có: \({2020^{f\left( x \right)}} = x + \sqrt {{x^2} + 2020} {\rm{ }}\left( {\forall x \in \mathbb{R}} \right) \Rightarrow f\left( x \right) = {\log _{2020}}\left( {x + \sqrt {{x^2} + 2020} } \right)\)
Mặt khác \(f'\left( x \right) = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 2020} }}}}{{x + \sqrt {{x^2} + 2020} }} = \frac{1}{{\sqrt {{x^2} + 2020} }} > 0{\rm{ }}\left( {\forall x \in \mathbb{R}} \right)\) nên hàm số \(f\left( x \right)\) đồng biến trên \(\mathbb{R}\) do đó \(f\left( {\log m} \right) < f\left( {{{\log }_m}2020} \right) \Leftrightarrow \log m < {\log _m}2020 \Leftrightarrow \log m < {\log _m}.20.\log 2020\)
Đặt \(t = \log m\) ta được \(t < \frac{{\log 2020}}{t} \Leftrightarrow \frac{{{t^2} - \log 2020}}{t} < 0 \Leftrightarrow \left[ \begin{array}{l}t < - \sqrt {\log 2020} \\0 < t < \sqrt {\log 2020} \end{array} \right.\).
Suy ra \(\left[ \begin{array}{l}\log m < - \sqrt {\log 2020} \\0 < \log m < \sqrt {\log 2020} \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 < m < 0,015...\\1 < m < 65,77\end{array} \right.\)
Kết hợp \(m \in \mathbb{Z} \Rightarrow m = \left\{ {2;3;4;...65} \right\}\) nên có 64 giá trị của tham số m.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247