Trong không gian Oxyz cho mặt cầu (S): (x-1)^2+(y+2)^2+(z-3)^2=27

Câu hỏi :

Trong không gian Oxyz cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 27\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm \(A\left( {0;0; - 4} \right)\), \(B\left( {2;0;0} \right)\) và cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm của \(\left( S \right)\), đáy là hình tròn \(\left( C \right)\) có thể tích lớn nhất. Biết mặt phẳng \(\left( \alpha \right)\) có phương trình dạng \(ax + by - z + c = 0\), khi đó \(a - b + c\) bằng:

A. 8                           

B. 0                           

C. 2                           

D. \( - 4\)

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có mặt cầu \(\left( S \right)\) có tâm \(I\left( {1; - 2;3} \right)\) bán kính \(R = 3\sqrt 3 \)

\(A \in \left( \alpha \right) \Rightarrow 4 + c = 0 \Leftrightarrow c = - 4\)\(A,B \in \left( \alpha \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {{n_\alpha }} = 0 \Leftrightarrow 2{\rm{a}} - 4 = 0 \Leftrightarrow a = 2\).

Suy ra \(d\left( {I,(\alpha )} \right) = \frac{{\left| {2b + 5} \right|}}{{\sqrt {{b^2} + 5} }}\)

Gọi r là bán kính đường tròn \(\left( C \right)\) ta có \({r^2} = {R^2} - {d^2}\left( {I,(\alpha )} \right) = 27 - {d^2}\) với \(0 < d < 3\sqrt 3 \).

Khi đó thể tích khối nón \(V = \frac{1}{3}\pi {r^2}d\) để V lớn nhất thì \(f\left( d \right) = {r^2}.d = \left( {27 - {d^2}} \right)d\) lớn nhất.

Xét hàm \(f\left( d \right) = 27{\rm{d}} - {d^3}\) với \(0 < d < 3\sqrt 3 \)

Ta có \(f'\left( d \right) = - 3{{\rm{d}}^2} + 27 = 0 \Leftrightarrow d = \pm 3\) suy ra \(\mathop {\max }\limits_{\left( {0;3\sqrt 3 } \right)} \left[ {f\left( d \right)} \right] = f\left( 3 \right) = 54\) đạt được khi

\(d = 3 \Leftrightarrow \frac{{\left| {2b + 5} \right|}}{{\sqrt {{b^2} + 5} }} = 3 \Leftrightarrow 5\left( {{b^2} - 4b + 4} \right) = 0 \Leftrightarrow b = 2\).

Vậy giá trị biểu thức \(a - b + c = - 4\).

Copyright © 2021 HOCTAP247