Một vật chuyển động theo quy luật s=-1/2*t^3 + 6t^2 với t (giây) là khoảng thời gian

Câu hỏi :

Một vật chuyển động theo quy luật \(s = - \frac{1}{2}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển trong thời gian đó. Hỏi trong khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất vật đạt được bằng bao nhiêu?

A. 24 m/s                   

B. 108 m/s                 

C. 64 m/s                   

D. 18 m/s

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Vận tốc của vật chuyển động \(v = {\left( s \right)^\prime } = - \frac{3}{2}{t^2} + 12t{\rm{ }}\left( {m{\rm{/s}}} \right)\)

Khoảng thời gian 6 giây, kể từ lúc bắt đầu chuyển động tức khoảng \(0 < t \le 6\)

Ta có \(v' = - 3{\rm{x}} + 12\) do \(a = - \frac{1}{2} < 0\)\(v' = 0 \Rightarrow t = 4\). Vậy vật đạt \({v_{\max }} \Leftrightarrow t = 4 \Rightarrow {v_{\max }} = 24{\rm{ m/s}}\).

Copyright © 2021 HOCTAP247