C
Đáp án C
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 6.6 = 36\).
Gọi X là biến cố “tổng số chấm trên mặt xuất hiện của hai con xúc sắc đó không vươt quá 5”
Gọi x, y lần lượt là số chấm xuất hiện trên hai con xúc sắc.
Theo bài ra, ta có: \(\left\{ \begin{array}{l}x + y \le 5\\1 \le x,y \le 6\end{array} \right. \to \left( {x;y} \right) = \left[ \begin{array}{l}\left( {1;1} \right),{\rm{ }}\left( {1;2} \right),{\rm{ }}\left( {1;3} \right),{\rm{ }}\left( {1;4} \right)\\{\rm{ }}\left( {2;1} \right),{\rm{ }}\left( {2;2} \right),{\rm{ }}\left( {2;3} \right)\\{\rm{ }}\left( {3;1} \right),{\rm{ }}\left( {3;2} \right)\\{\rm{ }}\left( {4;1} \right)\end{array} \right.\).
Do đó, số kết quả thuận lợi cho biến cố X là \(n\left( X \right) = 4 + 3 + 2 + 1 = 10\).
Vậy xác suất cần tính là \(P = \frac{{n\left( X \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{36}} = \frac{5}{{18}}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247