Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng \(\left( {SAB} \right)\), \(\left( {SBC} \right)\), \(\left( {SC{\rm{D}}} \right),{\rm{ }}\left( {S{\rm{D}}A} \right)\) với mặt đáy lần lượt là \(90^\circ ,{\rm{ }}60^\circ ,{\rm{ }}60^\circ ,{\rm{ }}60^\circ \). Biết rằng tam giác SAB vuông cân tại S, \(AB = a\) và chu vi tứ giác ABCD là 9a. Tính thể tích V của khối chóp S.ABCD.

A. \(V = \frac{{2{{\rm{a}}^3}\sqrt 3 }}{9}\)                                

B. \(V = {a^3}\sqrt 3 \)  

C. \(V = \frac{{{{\rm{a}}^3}\sqrt 3 }}{9}\)                                  

D. \(V = \frac{{{{\rm{a}}^3}\sqrt 3 }}{4}\)

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi và góc tạo bởi các mặt phẳng  (ảnh 1)

Gọi H là trung điểm của AB suy ra \(SH \bot AB\).

Do \(\left( {SAB} \right) \bot \left( {ABC{\rm{D}}} \right)\) nên \(SH \bot \left( {ABC{\rm{D}}} \right)\).

Dựng \(HM \bot BC,{\rm{ HN}} \bot {\rm{CD}},{\rm{ HP}} \bot {\rm{AD}}\).

Suy ra \(\widehat {SMH} = \widehat {SNH} = \widehat {SPH} = 60^\circ \).

Ta có: \(SH = \frac{{AB}}{2} = \frac{a}{2}\), \(HM\tan 60^\circ = HN\tan 60^\circ \)

\( = HP\tan 60^\circ = SH \Rightarrow HM = HN = HP = \frac{{a\sqrt 3 }}{6}\).

Mặt khác \({S_{ABC{\rm{D}}}} = {S_{BHC}} + {S_{CH{\rm{D}}}} + {S_{DHA}}\)

\( = \frac{1}{2}.\frac{{a\sqrt 3 }}{6}.\left( {BC + C{\rm{D}} + A{\rm{D}}} \right) = \frac{{a\sqrt 3 }}{{12}}.\left( {9{\rm{a}} - a} \right) = \frac{{2{{\rm{a}}^2}\sqrt 3 }}{3}\)

\( \Rightarrow V = \frac{1}{3}S.h = \frac{{{a^3}\sqrt 3 }}{9}\).

Copyright © 2021 HOCTAP247