Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:x-1/1=y+2/2=z/-1

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x - 1}}{1} = \frac{{y + 2}}{2} = \frac{z}{{ - 1}}\)\({d_2}:\frac{{x + 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\). Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) sao cho góc giữa mặt phẳng \(\left( P \right)\) và đường thẳng \({d_2}\) là lớn nhất là: \(ax - y + cz + d = 0\). Giá trị của \(T = a + c + d\) bằng

A. \(T = 0\)                

B. \(T = 3\)                 

C. \(T = - \frac{{13}}{4}\)    

D. \(T = - 6\)

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có: \({d_1} = \frac{{x - 1}}{1} = \frac{{y + 2}}{2} = \frac{z}{{ - 1}} \Rightarrow \left\{ \begin{array}{l}2{\rm{x}} - y - 4 = 0{\rm{ }}\left( \alpha \right)\\y + 2{\rm{z}} + 2 = 0{\rm{ }}\left( \beta \right)\end{array} \right.\)

Khi đó \({d_1} \subset \left( P \right) \Rightarrow \left( P \right):m\left( {2{\rm{x}} - y - 4} \right) + n\left( {y + 2{\rm{z}} + 2} \right) = 0,{\rm{ }}{{\rm{m}}^2} + {n^2} > 0\)

\( \Rightarrow \overrightarrow {{n_P}} = \left( {2m; - m + n;2n} \right)\) là VTPT của \(\left( P \right)\).

Mặt khác, \({d_2}\) có VTCP là \(\overrightarrow {{u_2}} = \left( {2; - 1;2} \right)\).

Xét

.

TH1: \(n = 0 \Rightarrow m \ne 0\), ta chọn .

TH2: \(n \ne 0\), ta chọn .

.

Lập bảng biến và nhận xét: .

Khi đó \(\frac{7}{5}\left( {2{\rm{x}} - y - 4} \right) + \left( {y + 2{\rm{z}} + 2} \right) = 0 \Rightarrow 7{\rm{x}} - y + 5{\rm{z}} - 9 = 0 \Rightarrow a = 7,c = 5,d = - 9 \Rightarrow T = a + c + d = 3\).

Copyright © 2021 HOCTAP247