Cho đồ thị hàm số f(x)=ã^3+bx^2+cx+d như hình vẽ bên. Số đường tiệm cận

Câu hỏi :

Cho đồ thị hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\) như hình vẽ bên. Số đường tiệm cận đứng của đồ thị hàm số \(y = \frac{{x - 1}}{{f\left( x \right) - 2}}\)

A. 1.                          

B. 2.                          

C. 3.                          

D. 4.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Phương trình \(f\left( x \right) = 2\) có nghiệm kép \(x = 1\) và một nghiệm \(x = {x_0} < 0\)

Do đó \(f\left( x \right) - 2 = k\left( {x - {x_0}} \right){\left( {x - 1} \right)^2}\)

Suy ra \(y = \frac{{x - 1}}{{f\left( x \right) - 2}} = \frac{{\left( {x - 1} \right)}}{{k\left( {x - {x_0}} \right){{\left( {x - 1} \right)}^2}}} = \frac{1}{{k\left( {x - {x_0}} \right)\left( {x - 1} \right)}}\) nên đồ thị hàm số \(y = \frac{{x - 1}}{{f\left( x \right) - 2}}\) có 2 đường tiệm cận đứng là \(x = {x_0}\), \(x = 1\).

Copyright © 2021 HOCTAP247