B
Đáp án B
Phương trình \(f\left( x \right) = 2\) có nghiệm kép \(x = 1\) và một nghiệm \(x = {x_0} < 0\)
Do đó \(f\left( x \right) - 2 = k\left( {x - {x_0}} \right){\left( {x - 1} \right)^2}\)
Suy ra \(y = \frac{{x - 1}}{{f\left( x \right) - 2}} = \frac{{\left( {x - 1} \right)}}{{k\left( {x - {x_0}} \right){{\left( {x - 1} \right)}^2}}} = \frac{1}{{k\left( {x - {x_0}} \right)\left( {x - 1} \right)}}\) nên đồ thị hàm số \(y = \frac{{x - 1}}{{f\left( x \right) - 2}}\) có 2 đường tiệm cận đứng là \(x = {x_0}\), \(x = 1\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247