Cho các số phức z thỏa mãn |z|=2 . Biết rằng tập hợp các điểm biểu diễn số phức

Câu hỏi :

Cho các số phức z thỏa mãn \(\left| z \right| = 2\). Biết rằng tập hợp các điểm biểu diễn số phức \(w = 3 - 2i + \left( {4 - 3i} \right)z\) là một đường tròn. Tính bán kính r của đường tròn đó:

A. \(r = 5\).                

B. \(r = 2\sqrt 5 \).      

C. \(r = 10\).              

D. \(r = 20\).

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Đặt \(w = x + yi\), \(\left( {x,y \in \mathbb{R}} \right)\) ta có

\(w = 3 - 2i + \left( {4 - 3i} \right)z \Leftrightarrow w - \left( {3 - 2i} \right) = \left( {4 - 3i} \right)z \Leftrightarrow \left| {w - \left( {3 - 2i} \right)} \right| = \left| {\left( {4 - 3i} \right)z} \right|\)

\( \Leftrightarrow \left| {\left( {x - 3} \right) + \left( {y + 2} \right)i} \right| = \left| {4 - 3i} \right|\left| z \right| \Leftrightarrow \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y + 2} \right)}^2}} = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}.2} \)

                                          \( \Leftrightarrow {\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 100\)

Suy ra tập hợp các điểm biểu diễn số phức \(w = 3 - 2i + \left( {4 - 3i} \right)z\) là một đường tròn có tâm \(I\left( {3; - 2} \right)\), bán kính \(r = 10\).

Copyright © 2021 HOCTAP247