A
Đáp án A
Gọi I là trung điểm của AD \( \Rightarrow \)ABCI là hình bình hành suy ra \(CI = a = \frac{1}{2}AD \Rightarrow \Delta ACD\) vuông tại C. Ta có \(\left\{ \begin{array}{l}AC \bot CD\\CD \bot SH\end{array} \right. \Rightarrow CD \bot \left( {SCH} \right)\)
Vạy góc giữa hai mặt phẳng \(\left( {SCD} \right)\) và đáy \(\left( {ABCD} \right)\)bằng \(\widehat {SCH} = 60^\circ \), \(AC = \sqrt {A{D^2} - C{D^2}} = a\sqrt 3 \Rightarrow HC = \frac{{2a\sqrt 3 }}{3}\)
\( \Rightarrow SH = HC\tan 60^\circ = 2a\)
Ta có \(h = 2\), \(k = \frac{{AH}}{{AC}} = \frac{1}{3}\), \(c = AC = \sqrt 3 \Rightarrow d = \frac{{6a\sqrt {13} }}{{13}}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247