Cho f(x)dx=3 và g(x)dx=-1 . Giá trị của [f(x)-5g(x)+x]dx bằng

Câu hỏi :

Cho \[\int\limits_0^2 {f\left( x \right)dx} = 3\]\[\int\limits_0^2 {g\left( x \right)dx} = - 1\]. Giá trị của \[\int\limits_0^2 {\left[ {f\left( x \right) - 5g\left( x \right) + x} \right]dx} \] bằng:

A. 12.                        

B. 0.                          

C. 8.                          

D. 10.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có: \[I = \int\limits_0^2 {\left[ {f\left( x \right) - 5g\left( x \right) + x} \right]dx} = \int\limits_0^2 {f\left( x \right)dx} + 5\int\limits_0^2 {g\left( x \right)dx} + \int\limits_0^2 {xdx} \].

Do đó: \[I = 3 - 5\left( { - 1} \right) + \frac{1}{2}\left( {{2^2} - {0^2}} \right) = 10\].

Copyright © 2021 HOCTAP247