Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng \[\left( {ABC} \right)\]\[AB = 2,AC = 4,SA = \sqrt 5 \]. Mặt cầu đi qua các đỉnh của hình chóp S.ABC có bán kính là:

A. \[R = \frac{5}{2}.\]                                

B. \[R = 5.\]               

C. \[R = \frac{{10}}{3}.\]         

D. \[R = \frac{{25}}{2}.\]

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương pháp:

Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp có cạnh bên vuông góc với đáy là \[R = \sqrt {\frac{{{h^2}}}{4} + S_{day}^2} \], trong đó h là chiều cao của khối chóp và \({R_{day}}\) là bán kính đường tròn ngoại tiếp đáy.

Cách giải:

Xét tam giác vuông ABC ta có \[BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \].

Tam giác ABC vuông tại A nên nội tiếp đường tròn đường kính BC.

Gọi \({R_{day}}\) là bán kính đường tròn ngoại tiếp tam giác ABC

Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp S.ABC\[SA \bot \left( {ABC} \right)\]:

\[R = \sqrt {\frac{{S{A^2}}}{4} + S_{day}^2} = \sqrt {\frac{5}{4} + 5}  = \frac{5}{2}\].

Copyright © 2021 HOCTAP247