Hệ số của số hạng chứa x^7 trong khai triển nhị thức

Câu hỏi :

Hệ số của số hạng chứa \[{x^7}\] trong khai triển nhị thức \[{\left( {x - \frac{2}{{x\sqrt x }}} \right)^{12}}\] (với \[x > 0\]) là:

A. 376.                      

B. \[ - 264.\]              

C. 264.                      

D. 260.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Số hạng tổng quát của khai triển \[{\left( {x - \frac{2}{{x\sqrt x }}} \right)^{12}}\] (với \[x > 0\]) là:

\[{T_{k + 1}} = C_{12}^k.{x^{12 - k}}.{\left( { - \frac{2}{{x\sqrt x }}} \right)^k} = {\left( { - 2} \right)^k}.C_{12}^k.{x^{12 - k}}.{x^{ - \frac{{3k}}{2}}} = {\left( { - 2} \right)^k}.C_{12}^k.{x^{12 - \frac{{5k}}{2}}}\]

Số hạng trên chứa \[{x^7}\] suy ra \[12 - \frac{{5k}}{2} = 7 \Leftrightarrow k = 2\].

Vậy hệ số của số hạng chứa \[{x^7}\] trong khai triển trên là \[ = {\left( { - 2} \right)^2}.C_{12}^2 = 264\].

Copyright © 2021 HOCTAP247