Cho hàm số y=f(x) , hàm số y=f'(x) liên tục trên R và có bảng biến thiên như hình vẽ:

Câu hỏi :

Cho hàm số \[y = f\left( x \right)\], hàm số \[y = f'\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như hình vẽ:

A. \[m \ge f\left( { - 1} \right) - 4.\]              

B. \[m \le f\left( 1 \right) - 4{e^2}.\] 

C. \[m < f\left( 1 \right) - 4{e^2}.\]                               

D. \[m > f\left( 1 \right) - 4{e^2}.\]

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có: \[f\left( x \right) < 4{e^{x + 1}} + m \Leftrightarrow m > f\left( x \right) - 4{e^{x + 1}} = g\left( x \right)\].

Mặt khác \[g'\left( x \right) = f'\left( x \right) - 4{e^{x + 1}}\], với \[x \in \left( { - 1;1} \right)\] thì \[\left\{ \begin{array}{l}f'\left( x \right) \le 4\\ - 4{e^{x + 1}} \in \left( { - 4{e^2}; - 4} \right)\end{array} \right.\].

Do đó \[g'\left( x \right) \le 4 - 4 = 0\] suy ra hàm số \[g\left( x \right)\] nghịch biến trên khoảng \[\left( { - 1;1} \right)\].

Khi đó bảng biến thiên của \[g\left( x \right)\] là:

Cho hàm số y=f(x) , hàm số y=f'(x)  liên tục trên R  và có bảng biến thiên như hình vẽ: (ảnh 2)

Suy ra phương trình \[m > f\left( x \right) - 4{e^{x + 1}}\] có nghiệm \[ \Leftrightarrow m > g\left( 1 \right) \Leftrightarrow m > f\left( 1 \right) - 4{e^2}\].

Copyright © 2021 HOCTAP247