Cho phương trình 2^( x^3+x^2-2x+m)-2^(x^2+x)+x^3-3x+m=0

Câu hỏi :

Cho phương trình \[{2^{{x^3} + {x^2} - 2x + m}} - {2^{{x^2} + x}} + {x^3} - 3x + m = 0\]. Tập các giá trị m để phương trình có 3 nghiệm phân biệt có dạng \[\left( {a;b} \right)\]. Tổng \[\left( {a + 2b} \right)\] bằng:

A. 1.                          

B. 0.                          

C. \[ - 2.\]                  

D. 2.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

\[{2^{{x^3} + {x^2} - 2x + m}} - {2^{{x^2} + x}} + {x^3} - 3x + m = 0 \Leftrightarrow {2^{{x^3} + {x^2} - 2x + m}} + \left( {{x^3} + {x^2} - 2x + m} \right) = {2^{{x^2} + x}} + \left( {{x^2} + x} \right)\;\;\;\left( 1 \right)\].

Xét hàm số \[f\left( t \right) = {2^t} + t\] với \[t \in \mathbb{R}\].

Do \[f'\left( t \right) = {2^t}.\ln 2 + 1 > 0\;\forall t \in \mathbb{R}\] nên hàm số \[f\left( t \right)\] đồng biến trên \[\mathbb{R}\].

Phương trình (1) có dạng \[f\left( {{x^3} + {x^2} - 2x + m} \right) = f\left( {{x^2} + x} \right)\].

Suy ra \[{x^3} + {x^2} - 2x + m = {x^2} + x \Leftrightarrow m = - {x^3} + 3x\;\;\;\left( 2 \right)\]

Bài toán trở thành tìm tập các giá trị m để phương trình (2) có 3 nghiệm phân biệt.

Ta có BBT của hàm số \[g\left( x \right) = - {x^3} + 3x\].

Cho phương trình 2^( x^3+x^2-2x+m)-2^(x^2+x)+x^3-3x+m=0 (ảnh 1)

Yêu cầu bài toán \[ \Rightarrow m \in \left( { - 2;2} \right)\] hay \[a = - 2;b = 2\].

Vậy \[a + 2b = 2\].

Copyright © 2021 HOCTAP247