Trong không gian tọa độ Oxyz, cho mặt cầu (S): (x-2)^2+(y-1)^2+(z-1)^2=16

Câu hỏi :

Trong không gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 16\]. Mặt phẳng \[\left( P \right)\] thay đổi luôn đi qua điểm \[A\left( {2;1;9} \right)\] và tiếp xúc với mặt cầu \[\left( S \right)\]. Đặt M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của khoảng cách từ điểm O đến \[\left( P \right)\]. Giá trị M + m bằng:

A. 8.                          

B. \[8\sqrt 3 .\]          

C. 9.                          

D. \[\sqrt {15} .\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có: \[\left( P \right):a\left( {x - 2} \right) + b\left( {y - 1} \right) + c\left( {z - 9} \right) = 0\;\left( {{a^2} + {b^2} + {c^2} > 0} \right)\].

Mặt khác  \[D\left( {I;\left( P \right)} \right) = 4 \Leftrightarrow \frac{{\left| {8c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 4 \Leftrightarrow \frac{{\left| {2c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 1\].

Do đó \[c \ne 0\] chọn \[c = 1 \Rightarrow {a^2} + {b^2} = 3\].

Đặt \[a = \sqrt 3 \sin t;\;b = \sqrt 3 \cos t \Rightarrow d\left( {O;\left( P \right)} \right) = \frac{{\left| {2a + b + 9} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = \frac{{\left| {2a + b + 9} \right|}}{2} = \frac{{\left| {2\sqrt 3 \sin t + \sqrt 3 \cos t + 9} \right|}}{2}\].

Mặt khác \[ - \sqrt {12 + 3} \le 2\sqrt 3 \sin t + \sqrt 3 \cos t \le \sqrt {12 + 3} \Rightarrow \frac{{9 - \sqrt {15} }}{2} \le {d_0} \le \frac{{9 + \sqrt {15} }}{2} \Rightarrow M + m = 9\].

Copyright © 2021 HOCTAP247