Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P: x-2y+2z-2=0

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + 2z - 2 = 0\] và điểm \[I\left( { - 1;2; - 1} \right)\]. Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.


A. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34.\]         


B. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 16.\]

C. \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 34.\]          

D. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 25.\]

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có: \({d_1} = d\left( {I;(P)} \right) = \frac{{\left| { - 1 - 4 - 2 - 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = 3\).

Gọi R là bán kính của mặt cầu tâm I.

Do đó: \({R^2} = d_1^2 + {5^2} = 34\).

Vậy phương trình mặt cầu \(\left( S \right)\) là: \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34\).

Copyright © 2021 HOCTAP247