Cho log3(a)=5 và log3(b)=2/3 . Tính giá trị của biểu thức

Câu hỏi :

Cho \[{\log _3}a = 5\]\[{\log _3}b = \frac{2}{3}\]. Tính giá trị của biểu thức \[I = 2{\log _6}\left[ {{{\log }_5}\left( {5a} \right)} \right] + {\log _{\frac{1}{9}}}{b^3}\].

A. \[I = 3\]                 

B. \[I = - 2\]              

C. \[I = 1\]                 

D. \[I = {\log _6}5 + 1\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Sử dụng các công thức:

\({\log _a}f\left( x \right) + {\log _a}g\left( x \right) = {\log _a}\left[ {f\left( x \right)g\left( x \right)} \right]{\rm{ }}\left( {0 < a \ne 1,f\left( x \right) > 0,g\left( x \right) > 0} \right)\)

\({\log _{{a^n}}}{b^m} = \frac{m}{n}{\log _a}b{\rm{ }}\left( {0 < a \ne 1,b > 0} \right)\)

\(I = 2{\log _6}\left[ {{{\log }_5}\left( {5{\rm{a}}} \right)} \right] + {\log _{\frac{1}{9}}}{b^3} = 2{\log _6}\left[ {1 + {{\log }_5}a} \right] - \frac{3}{2}{\log _3}b = 2{\log _6}6 - \frac{3}{2}.\frac{2}{3} = 2.1 - 1 = 1\).

Copyright © 2021 HOCTAP247