Cho hàm số f(x) dương thỏa mãn f(0)=e và x^2*f'(x)=f(x)+f'(x)

Câu hỏi :

Cho hàm số f(x) dương thỏa mãn \[f\left( 0 \right) = e\]\[{x^2}f'\left( x \right) = f\left( x \right) + f'\left( x \right),\forall x \ne \pm 1.\] Giá trị \[f\left( {\frac{1}{2}} \right)\]

A. \[{e^{\sqrt 3 }}.\]   

B. \[e\sqrt 3 .\]            

C. \[{e^2}.\]              

D. \[\frac{e}{{\sqrt 3 }}.\]

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Với \(f\left( x \right) > 0,\forall x \ne \pm 1\), ta có \({x^2}f'\left( x \right) = f\left( x \right) + f'\left( x \right) \Leftrightarrow \frac{{f'\left( x \right)}}{{f\left( x \right)}} = \frac{1}{{{x^2} - 1}}\).

Suy ra \(\int {\frac{{f'\left( x \right)}}{{f\left( x \right)}}d{\rm{x}}} = \int {\frac{{d{\rm{x}}}}{{{x^2} - 1}}} \Leftrightarrow \ln f\left( x \right) = \frac{1}{2}\ln \left| {\frac{{x - 1}}{{x + 1}}} \right| + C\).

Xét trên khoảng \(\left( { - 1;1} \right)\), ta có \(\ln f\left( x \right) = \frac{1}{2}\ln \frac{{1 - x}}{{x + 1}} + C\).

Do \(f\left( 0 \right) = e \Rightarrow C = 1\). Do đó \(\ln f\left( x \right) = \frac{1}{2}\ln \frac{{1 - x}}{{x + 1}} + 1 \Leftrightarrow f\left( x \right) = e\sqrt {\frac{{1 - x}}{{x + 1}}} \Rightarrow f\left( {\frac{1}{2}} \right) = \frac{e}{{\sqrt 3 }}\).

Copyright © 2021 HOCTAP247