Cho hình thang cong (H) giới hạn bởi các đường y=1/x, y=0, x=1, x=5

Câu hỏi :

Cho hình thang cong (H) giới hạn bởi các đường \[y = \frac{1}{x},{\mkern 1mu} y = 0,{\mkern 1mu} x = 1,{\mkern 1mu} x = 5.\] Đường thẳng \[x = k\] với \[1 < k < 5\] chia (H) thành hai phần là \[\left( {{S_1}} \right)\] \[\left( {{S_2}} \right)\] quay quanh trục \[Ox\] ta thu được hai khối tròn xoay có thể tích lần lượt là \[{V_1}\]\[{V_2}.\] Xác định k để \[{V_1} = 2{V_2}.\]

A. \[k = \frac{5}{3}.\]                                 

B. \[k = \frac{{15}}{7}.\]     

C. \[k = \ln 5.\]  

D. \[k = \sqrt[3]{{25}}.\]

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có \(\int {\frac{{d{\rm{x}}}}{{{x^2}}}} = - \frac{1}{x} = F\left( x \right) \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{\pi \int\limits_1^k {{{\left( {\frac{1}{x}} \right)}^2}d{\rm{x}}} }}{{\pi \int\limits_k^5 {{{\left( {\frac{1}{x}} \right)}^2}d{\rm{x}}} }} = \frac{{F\left( k \right) - F\left( 1 \right)}}{{F\left( 5 \right) - F\left( k \right)}} = 2 \Leftrightarrow k = \frac{{15}}{7}\).

Copyright © 2021 HOCTAP247