D
Đáp án D
Chú ý \({\left( {\left| x \right|} \right)^\prime } = \frac{x}{{\left| x \right|}}\). Ta có: \(g'\left( x \right) = \left( {2{\rm{x}} - \frac{{2{\rm{x}}}}{{\left| x \right|}}} \right)f'\left( {{x^2} - 2\left| x \right|} \right)\).
Ta có \(2{\rm{x}} - \frac{{2{\rm{x}}}}{{\left| x \right|}} = \frac{{2{\rm{x}}}}{{\left| x \right|}}\left( {\left| x \right| - 1} \right)\) đổi dấu qua 3 điểm \(x = 0,x = \pm 1\).
Phương trình \(f'\left( {{x^2} - 2\left| x \right|} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} - 2\left| x \right| = a \in \left( { - \infty ; - 1} \right){\rm{ }}\left( 1 \right)\\{x^2} - 2\left| x \right| = b \in \left( { - 1;0} \right){\rm{ }}\left( 2 \right)\\{x^2} - 2\left| x \right| = c \in \left( {0;1} \right){\rm{ }}\left( 3 \right)\\{x^2} - 2\left| x \right| = d \in \left( {1; + \infty } \right){\rm{ }}\left( 4 \right)\end{array} \right.\)
Nếu coi \(t = \left| x \right|\) thì phương trình (1) vô nghiệm vì \({t^2} - 2t = {\left( {t - 1} \right)^2} - 1 \ge - 1\).
Phương trình (2) có 2 nghiệm \({t_1},{t_2} > 0\) nên có 4 nghiệm x.
Phương trình (3) có 2 nghiệm t trái dấu nên có 2 nghiệm x.
Phương trình (4) có 2 nghiệm t trái dấu nên có 2 nghiệm x.
Do đó hàm số \(y = g\left( x \right)\) có 11 điểm cực trị.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247