C
Đáp án C
Hàm số \(y = \frac{{{x^2} + 2{\rm{x}} + 2}}{{x + 1}}\) liên tục trên đoạn \(\left[ { - \frac{1}{2};2} \right]\).
Ta có \(y' = \frac{{{x^2} + 2{\rm{x}}}}{{{{\left( {x + 1} \right)}^2}}};{\rm{ y'}} = 0 \Leftrightarrow {x^2} + 2{\rm{x}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ { - \frac{1}{2};2} \right]\\x = - 2 \notin \left[ { - \frac{1}{2};2} \right]\end{array} \right.\).
Lại có \(y\left( { - \frac{1}{2}} \right) = \frac{5}{2};{\rm{ y}}\left( 0 \right) = 2;{\rm{ y}}\left( 2 \right) = \frac{{10}}{3}\). Vậy \(\mathop {\max }\limits_{\left[ { - \frac{1}{2};2} \right]} y = y\left( 2 \right) = \frac{{10}}{3} = M\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247