Cho hình thang vuông ABCD (vuông tại A và D) có độ dài các cạnh là

Câu hỏi :

Cho hình thang vuông ABCD (vuông tại A và D) có độ dài các cạnh là \[AD = a,{\mkern 1mu} AB = 5a,{\mkern 1mu} CD = 2a.\] Tính thể tích V của vật thể tròn xoay khi quay quanh hình thang trên quanh trục AB.

A. \[V = 5\pi {a^3}.\] 

B. \[V = \frac{5}{3}\pi {a^3}.\]                   

C. \[V = 3\pi {a^3}.\]  

D. \[V = \frac{{11}}{3}\pi {a^3}.\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Cho hình thang vuông ABCD (vuông tại A và D) có độ dài các cạnh là  (ảnh 1)

Gọi H là hình chiếu của C trên AB.

\( \Rightarrow A{\rm{D}}CH\) là hình chữ nhật \( \Rightarrow AH = 2{\rm{a}},BH = 2{\rm{a}}\).

Khi quay hình thang ABCD quanh trục AB, ta được:

Khối trụ thể tích \({V_1}\), có chiều cao \({h_1} = AH = 2{\rm{a}}\), bán kính đường tròn đáy \(r = A{\rm{D}} = a \Rightarrow {V_1} = 2\pi {a^3}\).

Khối nón thể tích \({V_2}\), có chiều cao \({h_2} = BH = 3{\rm{a}}\), bán kính đường tròn đáy \(r = CH = a \Rightarrow {V_2} = \pi {a^3}\).

Vậy thể tích khối tròn xoay cần tìm là \(V = {V_1} + {V_2} = 3\pi {a^3}\).

Copyright © 2021 HOCTAP247