A
Đáp án A
Ta có \(g'\left( x \right) = \left( {3{{\rm{x}}^2} - 6{\rm{x}}} \right)f'\left( {{x^3} - 3{{\rm{x}}^2}} \right) - {x^4} + 2{{\rm{x}}^3}\)
\( = 3\left( {{x^2} - 2{\rm{x}}} \right)f'\left( {{x^3} - 3{{\rm{x}}^2}} \right) - {x^2}\left( {{x^2} - 2{\rm{x}}} \right) = \left( {{x^2} - 2{\rm{x}}} \right)\left[ {3f'\left( {{x^3} - 3{{\rm{x}}^2}} \right) - {x^2}} \right]\)
Với \(x \in \left[ { - 1;2} \right] \Rightarrow {x^3} - 3{{\rm{x}}^2} \in \left[ { - 4;0} \right] \Rightarrow f'\left( {{x^3} - 3{{\rm{x}}^2}} \right) \le 0{\rm{ }}\left( {\forall x \in \left[ { - 1;2} \right]} \right)\)
Mặt khác \( - {x^2} \in \left[ { - 4;0} \right]\) suy ra \(3f'\left( {{x^3} - 3{{\rm{x}}^2}} \right) - {x^2} \le 0{\rm{ }}\left( {\forall x \in \left[ { - 1;2} \right]} \right)\)
Do đó \(g'\left( x \right) = 0 \Leftrightarrow x = 0\), ta có bảng biến thiên
Do đó \(\mathop {\min }\limits_{\left[ {0;2} \right]} g\left( x \right) = g\left( 0 \right) = f\left( 0 \right) + 3 = 5\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247