Cho phương trình 2^2*x-5*2^x+6=0 có hai nghiệm x1,x2.

Câu hỏi :

Cho phương trình \[{2^{2x}} - {5.2^x} + 6 = 0\] có hai nghiệm \[{x_1},{x_2}\]. Tính \[P = {x_1}.{x_2}\].

A. \[P = {\log _2}6\]  

B. \[P = 2{\log _2}3\] 

C. \[P = {\log _2}3\]  

D. \[P = 6\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp

Coi phương trình đã cho là bậc hai ẩn \({2^x}\), giải phương trình tìm x và kết luận.

Cách giải

Ta có: \({2^{2x}} - {5.2^x} + 6 = 0 \Leftrightarrow \left( {{2^x} - 2} \right)\left( {{2^x} - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{2^x} = 2\\{2^x} = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = {\log _2}3\end{array} \right.\)

Do đó \(P = {x_1}{x_2} = 1.{\log _2}3 = {\log _2}3.\)

Copyright © 2021 HOCTAP247