Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P)x - 2y + 2z - 2 = 0

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + 2z - 2 = 0\] và điểm \[I\left( { - 1;2; - 1} \right)\]. Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.


A. \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 34\] 


B. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 16\]

C. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 25\]

D. \[\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34\]

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp

+ Cho mặt cầu \(\left( S \right)\) có tâm I và bán kính R và mặt phẳng \(\left( P \right)\) cắt mặt cầu theo giao tuyến là đường tròn có bán kính r thì ta có mối liên hệ \({R^2} = {h^2} + {r^2}\) với \(h = d\left( {I,\left( P \right)} \right)\). Từ đó ta tính được R.

+ Phương trình mặt cầu tâm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và bán kính R có dạng \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}\)

Cách giải

+ Ta có \(h = d\left( {I,\left( P \right)} \right) = \frac{{\left| { - 1 - 2.2 + 2.\left( { - 1} \right) - 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = \frac{9}{3} = 3.\)

+ Từ đề bài ta có bán kính đường tròn giao tuyến là \(r = 5\) nên bán kính mặt cầu là \(R = \sqrt {{r^2} + {h^2}} = \sqrt {{5^2} + {3^2}} = \sqrt {34} .\)

+ Phương trình mặt cầu tâm \(I\left( { - 1;2; - 1} \right)\) và bán kính \(R = \sqrt {34} \)\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 34.\)

Copyright © 2021 HOCTAP247