Trang chủ Đề thi & kiểm tra Toán học Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !! Biết bất phương trình log5(5^x-1)*log25(5^x+1-5)<=1 có tập nghiệm là đoạn

Biết bất phương trình log5(5^x-1)*log25(5^x+1-5)<=1 có tập nghiệm là đoạn

Câu hỏi :

Biết bất phương trình \[{\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1\] có tập nghiệm là đoạn \[\left[ {a;b} \right]\]. Giá trị của \[a + b\] bằng

A. \[2 + {\log _5}156\]                                

B. \[ - 1 + {\log _5}156\]             

C. \[ - 2 + {\log _5}156\]             

D. \[ - 2 + {\log _5}26\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp

Giải bất phương trình bằng cách đưa về bất phương trình bậc hai, ẩn là \({\log _5}\left( {{5^x} - 1} \right).\)

Cách giải

Điều kiện: \({5^x} - 1 > 0 \Leftrightarrow x > 0\)

Ta có:

\({\log _5}\left( {{5^x} - 1} \right).{\log _{25}}\left( {{5^{x + 1}} - 5} \right) \le 1 \Leftrightarrow {\log _5}\left( {{5^x} - 1} \right).\frac{1}{2}{\log _5}\left[ {5\left( {{5^x} - 1} \right)} \right] \le 1\)

\( \Leftrightarrow {\log _5}\left( {{5^x} - 1} \right).\left[ {1 + {{\log }_5}\left( {{5^x} - 1} \right)} \right] - 2 \le 0\)

\( \Leftrightarrow \log _5^2\left[ {{5^x} - 1} \right] + {\log _5}\left( {{5^x} - 1} \right) - 2 \le 0\)

\( \Leftrightarrow \left[ {{{\log }_5}\left( {{5^x} - 1} \right) - 1} \right]\left[ {{{\log }_5}\left( {{5^x} - 1} \right) + 2} \right] \le 0\)

\( \Leftrightarrow - 2 \le {\log _5}\left( {{5^x} - 1} \right) \le 1 \Leftrightarrow {5^{ - 2}} \le {5^x} - 1 \le {5^1} \Leftrightarrow \frac{1}{{25}} \le {5^x} - 1 \le 5\)

\( \Leftrightarrow \frac{{26}}{{25}} \le {5^x} \le 6 \Leftrightarrow {\log _5}\frac{{26}}{{25}} \le x \le {\log _5}6\)

Do đó tập nghiệm của bất phương trình là \(\left[ {{{\log }_5}\frac{{26}}{{25}};{{\log }_5}6} \right] \Rightarrow a = {\log _5}\frac{{26}}{{25}};b = {\log _5}6.\)

\( \Rightarrow a + b = {\log _5}\frac{{26}}{{25}} + {\log _5}6 = {\log _5}\frac{{156}}{{25}} = {\log _5}156 - {\log _5}25 = {\log _5}156 - 2\)

Copyright © 2021 HOCTAP247