B
Đáp án B
Đặt \(t = {2^x}\). Với \(x \ge 0\) thì \(t \ge 1.\)
Bất phương trình đã cho trở thành: \({t^2} - 2\left( {m - 1} \right)t + m \ge 0\left( * \right)\).
Bài toán trở thành: Tìm m để bất phương trình (*) nghiệm đúng với mọi \(t \ge 1.\)
Ta có: \(\left( * \right) \Leftrightarrow {t^2} - 2t \ge m\left( {2t - 1} \right) \Leftrightarrow m \le \frac{{{t^2} - 2t}}{{2t - 1}}\) (Do \(t \ge 1\)).
Xét hàm số: \(f\left( t \right) = \frac{{{t^2} - 2t}}{{2t - 1}}\) trên \(\left[ {1; + \infty } \right)\) có đạo hàm \(f'\left( t \right) = \frac{{2{t^2} - 2t + 2}}{{{{\left( {2t - 1} \right)}^2}}} > 0\) với mọi \(t \ge 1.\)
Hàm số đồng biến dẫn đến \(\mathop {Min}\limits_{\left[ {1; + \infty } \right)} f\left( t \right) = - 1.\)
Do đó để bất phương trình (*) nghiệm đúng với mọi \(t \ge 1\) thì \(m \le \mathop {Min}\limits_{\left[ {1; + \infty } \right)} f\left( t \right) = - 1.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247