Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn

Câu hỏi :

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn \[\left[ { - 10;10} \right]\] để bất phương trình \[{\log _3}\frac{{2{x^2} + x + m + 1}}{{{x^2} + x + 1}} \ge 2{x^2} + 4x + 5 - 2m\] có nghiệm. Số phần tử của tập hợp S bằng

A. 20.                     

B. 10.                     

C. 15.                     

D. 5.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Để ý vế trái có 2m nên bất phương trình tương đương

\({\log _3}\left( {2{x^2} + x + m + 1} \right) + 2\left( {2{x^2} + x + m + 1} \right) \ge {\log _3}\left( {{x^2} + x + 1} \right) + 6\left( {{x^2} + x + 1} \right) + 1\)

\( \Leftrightarrow {\log _3}\left( {2{x^2} + x + n + 1} \right) + 2\left( {2{x^2} + x + m + 1} \right) \ge {\log _3}\left( {3{x^2} + 3x + 3} \right) + 6\left( {{x^2} + x + 1} \right)\)

Sử dụng hàm số tương đồng

\(f\left( t \right) = {\log _3}t + 2t \Rightarrow f\left( t \right) \uparrow \Rightarrow f\left( {2{x^2} + x + m + 1} \right) \ge f\left( {3{x^2} + 3x + 3} \right)\)

\( \Leftrightarrow 2{x^2} + x + m + 1 \ge 3{x^2} + 3x + 3 \Leftrightarrow m \ge {x^2} + 2x + 2 \Leftrightarrow m \ge {\left( {x + 1} \right)^2} + 1\)

Bất phương trình có nghiệm khi \(m \ge \min \left[ {{{\left( {x + 1} \right)}^2} + 1} \right] = 1,\) suy ra 10 giá trị nguyên m.

Copyright © 2021 HOCTAP247