Có bao nhiêu giá trị nguyên dương của tham số m để tồn tại các số thực

Câu hỏi :

Có bao nhiêu giá trị nguyên dương của tham số m để tồn tại các số thực \[x,y\] thỏa mãn đồng thời \[{e^{3x + 5y - 10}} - {e^{x + 3y - 9}} = 1 - 2x - 2y\] \[\log _5^2(3x + 2y + 4) - (m + 6){\log _5}(x + 5) + {m^2} + 9 = 0\]?

A. 3.                      

B. 5.                      

C. 4.                       

D. 6.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có \({e^{3x + 5y - 10}} - {e^{x + 3y - 9}} = 1 - 2x - 2y \Leftrightarrow {e^{3x + 5y - 10}} - {e^{x + 3y - 9}} = \left( {x + 3y - 9} \right) - \left( {3x + 5y - 10} \right)\)

\( \Leftrightarrow {e^{3x + 5y - 10}} + \left( {3x + 5y - 10} \right) = {e^{x + 3y - 9}} + \left( {x + 3y - 9} \right)\)

\( \Leftrightarrow f\left( {3x + 5y - 10} \right) = f\left( {x + 3y - 9} \right)\) (1)

Với \(f\left( t \right) = {e^t} + t.\)\(f'\left( t \right) = {e^t} + 1 > 0\,\,\forall t \in \mathbb{R}\) nên \(f\left( t \right)\) là hàm số đồng biến trên R.

Do đó \(\left( 1 \right) \Leftrightarrow 3x + 5y - 10 = x + 3y - 9 \Leftrightarrow 2y = 1 - 2x.\)

Thay vào điều kiện còn lại trong đề bài ta được phương trình

\(\log _5^2\left( {x + 5} \right) - \left( {m + 6} \right){\log _5}\left( {x + 5} \right) + {m^2} + 9 = 0\) (2)

Bài toán được thỏa mãn khi và chỉ khi phương trình (2) có nghiệm x, điều này xảy ra khi

\(\Delta = 3{m^2} + 12m \ge 0 \Leftrightarrow 0 \le m \le 4 \Rightarrow m = 1,m = 2,m = 3,m = 4\) (vì m là số nguyên dương).

Copyright © 2021 HOCTAP247