Một chất điểm đang chuyển động với vận tốc v0=15m/s

Câu hỏi :

Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15{\mkern 1mu} m/s\] thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t{\mkern 1mu} \left( {m/{s^2}} \right).\] Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.

A. \[68,25{\mkern 1mu} m.\]                       

B. \[70,25{\mkern 1mu} m.\] 

C. \[69,75{\mkern 1mu} m.\]                              

D. \[67,25{\mkern 1mu} m.\]

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có: \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 4t} \right)dt} = \frac{{{t^3}}}{3} + 2{t^2} + C\left( {m/s} \right)\].

Do khi bắt đầu tăng tốc \[{v_0} = 15\] nên \[{v_{\left( {t = 0} \right)}} = 15 \Rightarrow C = 15 \Rightarrow v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\]

Khi đó quãng đường đi được bằng \[S = \int\limits_0^3 {v\left( t \right)dt} = \int\limits_0^3 {\left( {15 + \frac{{{t^3}}}{3} + 2{t^2}} \right)dt = \left. {\left( {15t + \frac{{{t^4}}}{{12}} + \frac{2}{3}{t^3}} \right)} \right|_0^3 = 69,75m} \].

Copyright © 2021 HOCTAP247