D
Đáp án D
Đặt \(t = 4x \Rightarrow dt = 4dx\), đổi cận ta được \(\int\limits_0^1 {\frac{{xdx}}{{f\left( {4x} \right)}} = \int\limits_0^4 {\frac{{t.\frac{{dt}}{4}}}{{4f\left( t \right)}}} = 1 \Leftrightarrow \int\limits_0^4 {\frac{{tdt}}{{f\left( t \right)}} = 16} } \)
Do đó \(\int\limits_0^4 {\frac{{xdx}}{{f\left( x \right)}}} = 16\), đặt \(\left\{ \begin{array}{l}u = \frac{1}{{f\left( x \right)}}\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{ - f'\left( x \right)}}{{{f^2}\left( x \right)}}\\v = \frac{{{x^2}}}{2}\end{array} \right.\)
Suy ra \(\int\limits_0^4 {\frac{{xdx}}{{f\left( x \right)}}} = \left. {\frac{{{x^2}}}{{2f\left( x \right)}}} \right|_0^4 + \frac{1}{2}\int\limits_0^4 {\frac{{{x^2}f'\left( x \right)dx}}{{{f^2}\left( x \right)}}} \Leftrightarrow 16 = \frac{{16}}{{2f\left( 4 \right)}} + \frac{1}{2}I \Leftrightarrow I = 24\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247