Cho các số phức z, w thỏa mãn |z-5+3i|=3, |iw+4+2i|=2

Câu hỏi :

Cho các số phức \[z,w\] thỏa mãn \[\left| {z - 5 + 3i} \right| = 3,\left| {iw + 4 + 2i} \right| = 2.\] Tìm giá trị lớn nhất của biểu thức \[T = \left| {3iz + 2w} \right|.\]

A. \[\sqrt {578} + 13.\]                               

B. \[\sqrt {578} + 5.\] 

C. \[\sqrt {554} + 13.\] 

D. \[\sqrt {554} + 5.\]

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có \(\left| {z - 5 + 3i} \right| = 3 \Leftrightarrow \left| {3iz = 3i\left( { - 5 + 3i} \right)} \right| = 3\left| {3i} \right| \Leftrightarrow \left| {3iz - 9 - 15i} \right| = 9\)

Do đó tập hợp điểm M biểu diễn số phức \(3iz\) là đường tròn tâm \(I\left( {9;15} \right)\) bán kính \({R_1} = 9\).

Lại có: \(\left| {iw + 4 + 2i} \right| = 2 \Leftrightarrow \left| {w + \frac{4}{i} + 2} \right| = 2 \Leftrightarrow \left| {w + 2 - 4i} \right| = 2 \Leftrightarrow \left| { - 2w - 4 + 8i} \right| = 4\)

Suy ra tập hợp điểm N biểu diễn số phức \( - 2w\) là đường tròn tâm \(K\left( {4; - 8} \right)\) bán kính \({R_2} = 4\).

Khi đó \(T = \left| {3iz + 2w} \right| = \left| {3iz - \left( { - 2w} \right)} \right| = MN\)\(M{N_{\max }} = IK + {R_1} + {R_2} = \sqrt {554} + 13\).

Copyright © 2021 HOCTAP247