A.\[\alpha = \beta \]
B. \[\alpha = {180^0} - \beta \]
C. \[\sin \alpha = \sin \beta \]
D. \[\cos \alpha = \cos \beta \]
Ta có:\[\cos \beta = \cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right|\]
\[ = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {a.a' + b.b' + c.c'} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{a^{\prime 2}} + {b^{\prime 2}} + {c^{\prime 2}}} }}\]
Do đó \[0 \le \beta \le {90^0}\]trong khi\[0 \le \alpha \le {180^0}\]nên hai góc này có thể bằng nhau cũng có thể bù nhau, do đó A, B sai.
Ngoài ra, khi \[\alpha = \beta \] hay\[\alpha = {180^0} - \beta \] thì ta đều có\[\sin \alpha = \sin \beta \]nên C đúng.
D sai trong trường hợp hai góc bù nhau.
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247