Trong hệ trục toạ độ không gian Oxyz, cho

Câu hỏi :

Trong hệ trục toạ độ không gian Oxyz, cho \[A\left( {1,0,0} \right),B\left( {0,b,0} \right),C\left( {0,0,c} \right),\] biết b,c>0, phương trình mặt phẳng \[\left( P \right):y - z + 1 = 0\;\]. Tính \[M = c + b\]  biết \[\left( {ABC} \right) \bot \left( P \right),\;d\left( {O,\left( {ABC} \right)} \right) = \frac{1}{3}\]

A.2

B. \(\frac{1}{2}\)

C. \[\frac{5}{2}\]

D. 1

* Đáp án

* Hướng dẫn giải

Theo giả thiết\[(ABC) \bot (P)\]  nên ta có\[0.bc + 1.c - 1.b = 0 \Leftrightarrow c - b = 0 \Leftrightarrow b = c\]

Với giả thiết\[d\left( {O,(ABC)} \right) = \frac{1}{3}\]  ta có\[\frac{{| - bc|}}{{\sqrt {{b^2}{c^2} + {b^2} + {c^2}} }} = \frac{1}{3}\]

Vì b,c>0 nên có

\[\sqrt {{b^2}{c^2} + {b^2} + {c^2}} = 3bc \Leftrightarrow {b^2}{c^2} + {b^2} + {c^2} = 9{b^2}{c^2} \Leftrightarrow {b^2} + {c^2} = 8{b^2}{c^2}\]

Thay\[b = c > 0\] vào ta được \[2{b^2} = 8{b^4} \Leftrightarrow {b^2} = \frac{1}{4} \Leftrightarrow b = \frac{1}{2}\] suy ra\[c = \frac{1}{2}\]

Vậy\[M = b + c = 1\]Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các dạng toán viết phương trình mặt phẳng !!

Số câu hỏi: 46

Copyright © 2021 HOCTAP247