A.(S) là mặt phẳng có phương trình x=0.
B.(S) là mặt phẳng có phương trình \[2y - 2z + 1 = 0\].
C.(S) là đường thẳng xác định bởi giao tuyến của hai mặt phẳng có phương trình x=0 và \[2y - 2z + 1 = 0.\]
D.(S) là hai mặt phẳng có phương trình x=0x=0 và \[2y - 2z + 1 = 0.\]
Giả sử M(x,y,z) là điểm cách đều hai mặt phẳng (P) và (Q). Ta có
\(\frac{{|x + 2y - 2z + 1|}}{3} = \frac{{|x - 2y + 2z - 1|}}{3}\)
\[ \Leftrightarrow |x + 2y - 2z + 1| = |x - 2y + 2z - 1|\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 2y - 2z + 1 = x - 2y + 2z - 1}\\{x + 2y - 2z + 1 = - (x - 2y + 2z - 1)}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4y - 4z + 2 = 0}\\{2x = 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2y - 2z + 1 = 0}\\{x = 0}\end{array}} \right.\)
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247