A.\[3x + 2y + 6z - 23 = 0\]
B. \[3x - 2y + 6z - 23 = 0\]
C. \[3x + 2y + 6z + 23 = 0\]
D. \[3x + 2y + 6z - 12 = 0\]
Mặt phẳng (P) đi qua giao tuyến của (Q),(R) nên có phương trình dạng
\[m\left( {19x - 6y - 4z + 27} \right) + n\left( {42x - 8y + 3z + 11} \right) = 0\] với \[{m^2} + {n^2} > 0.\]
Do (P) đi qua M(3;4;1) nên\[56m + 108n = 0 \Rightarrow \frac{m}{n} = - \frac{{27}}{{14}}.\]
Chọn\[m = 27,n = - 14\]thì:
\[\begin{array}{*{20}{l}}{\left( P \right):27.\left( {19x - 6y - 4z + 27} \right) - 14.\left( {42x - 8y + 3z + 11} \right) = 0}\\{ \Leftrightarrow - 75x - 50y - 150z + 575 = 0}\\{ \Leftrightarrow 3x + 2y + 6z - 23 = 0}\end{array}\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247