Cho mặt phẳng [ left( alpha right) ; ]đi qua hai điểm M(4;0;0) và N(0;0;3) sao cho mặt phẳng

Câu hỏi :

Cho mặt phẳng \[\left( \alpha \right)\;\]đi qua hai điểm M(4;0;0) và N(0;0;3) sao cho mặt phẳng \[\left( \alpha \right)\;\]tạo với mặt phẳng (Oyz) một góc bằng 600.  Tính khoảng cách từ điểm gốc tọa độ đến mặt phẳng \[\left( \alpha \right)\]

A.1

B.\[\frac{3}{2}\]

C. \[\frac{2}{{\sqrt 3 }}\]

D. 2

* Đáp án

* Hướng dẫn giải

Gọi\[\overrightarrow {{n_{\left( \alpha \right)}}} = \left( {a;b;c} \right)\]là 1 VTPT của (α)(α).

Ta có\[\overrightarrow {{n_{\left( {Oyz} \right)}}} = \left( {1;0;0} \right)\]nên góc giữa\[\left( \alpha \right)\]và (Oyz) bằng\({60^ \circ }\)

\[\begin{array}{*{20}{l}}{ \Leftrightarrow \cos {{60}^0} = \frac{{\left| {\overrightarrow {{n_{\left( \alpha \right)}}} .\overrightarrow {{n_{\left( {Oyz} \right)}}} } \right|}}{{\left| {\overrightarrow {{n_{\left( \alpha \right)}}} } \right|.\left| {\overrightarrow {{n_{\left( {Oyz} \right)}}} } \right|}}}\\{ \Leftrightarrow \frac{1}{2} = \frac{{\left| {a.1 + b.0 + c.0} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{1^2} + {0^2} + {0^2}} }}}\\{ \Leftrightarrow \frac{1}{2} = \frac{{\left| a \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}}\end{array}\]

\[\left( \alpha \right)\]đi qua M(4;0;0) và nhận\[\overrightarrow {{n_{\left( \alpha \right)}}} = \left( {a;b;c} \right)\]làm VTPT nên (α) có phương trình tổng quát là:

\[a\left( {x - 4} \right) + b\left( {y - 0} \right) + c\left( {z - 0} \right) = 0\]

Suy ra khoảng cách từ O đến \[\left( \alpha \right)\]là:

\[d\left( {O,\left( \alpha \right)} \right) = \frac{{\left| {a.0 + b.0 + c.0 - 4a} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = \frac{{\left| {4a} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 4.\frac{{\left| a \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }} = 4.\frac{1}{2} = 2\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các dạng toán viết phương trình mặt phẳng !!

Số câu hỏi: 46

Copyright © 2021 HOCTAP247