Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:

A.\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 4t}\\{y = - 2 + 3t}\\{z = - 3 - 7t}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 4t}\\{y = 2 + 3t}\\{z = 3 - 7t}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 3t}\\{y = 2 - 4t}\\{z = 3 - 7t}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 8t}\\{y = - 2 + 6t}\\{z = - 3 - 14t}\end{array}} \right.\)

* Đáp án

* Hướng dẫn giải

Mặt phẳng \[\left( \alpha \right)\]có VTPT là\[\overrightarrow {{n_\alpha }} = \left( {4;3; - 7} \right)\]

Do\[d \bot \left( \alpha \right)\]nên có VTCP là\[\overrightarrow {{u_d}} = \overrightarrow {{n_\alpha }} = \left( {4;3; - 7} \right)\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các bài toán về đường thẳng và mặt phẳng !!

Số câu hỏi: 26

Copyright © 2021 HOCTAP247