A.\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 4t}\\{y = - 2 + 3t}\\{z = - 3 - 7t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 4t}\\{y = 2 + 3t}\\{z = 3 - 7t}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 3t}\\{y = 2 - 4t}\\{z = 3 - 7t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 8t}\\{y = - 2 + 6t}\\{z = - 3 - 14t}\end{array}} \right.\)
A.(−1;1;−3)
B.(1;2;0)
C.(2;−2;3)
D.(2;−2;−3)
A.Đường thẳng d cắt mặt phẳng (P).
B.Đường thẳng d song song với mặt phẳng (P).
C.Đường thẳng d nằm trong mặt phẳng (P).
D.Đường thẳng d vuông góc với mặt phẳng (P).
A.d nằm trong (P)
B.d song song với (P)
C.d vuông góc với (P)
D.d tạo với (P) một góc nhỏ hơn 450
A.\[m = \frac{3}{5}\]
B. \(m = 1\)
C. \(m = 6\)
D. \[m = \frac{2}{5}\]
A.\[\frac{x}{2} = \frac{{y - 2}}{{ - 3}} = \frac{{z + 1}}{1}\]
B. \[\frac{{x + 1}}{{ - 2}} = \frac{{y - 2}}{{ - 3}} = \frac{{z - 1}}{1}\]
C. \[\frac{{x - 1}}{2} = \frac{{y + 2}}{3} = \frac{{z + 1}}{1}\]
D. \[\frac{x}{2} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 1}}{{ - 1}}\]
A.\[(\beta ):4x + 3y - 7z - 3 = 0\]
B. \[(\beta ):4x + 3y - 7z + 11 = 0\]
C. \[(\beta ):4x + 3y - 7z - 11 = 0\]
D. \[(\beta ):4x + 3y - 7z + 5 = 0\]
A.H(−1;−2;6)
B.H(1;2;6)
C.H(1;−2;6)
D.H(1;−2;−6)
A.\[\frac{{x + 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}\]
B. \[\frac{{x - 2}}{{ - 2}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\]
C. \[\frac{{x + 5}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 1}}\]
D. \[\frac{x}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\]
A.\[{\rm{\Delta }}:\frac{x}{{ - 6}} = \frac{{y + 1}}{3} = \frac{{z - 2}}{9}\]
B. \[{\rm{\Delta }}:\frac{{x - 3}}{{50}} = \frac{y}{2} = \frac{{z + 1}}{{ - 75}}\]
C. \[{\rm{\Delta }}:\frac{{x - 1}}{2} = \frac{{y - 1}}{5} = \frac{{z + 2}}{{ - 3}}\]
D. \[{\rm{\Delta }}:\frac{{x - 1}}{2} = \frac{{y + 1}}{5} = \frac{z}{3}\]
A.\[(P):5x - y - 3z + 2 = 0\]
B. \[(P):3x + y - 5z + 6 = 0\]
C. \[(P):3x + 3y + z - 8 = 0\]
D. \[(P):x - y + 2z - 4 = 0\]
A.\[{\rm{\Delta }}:\frac{{x - 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]
B. \[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]
C. \[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]
D. \[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 1}}{{ - 1}}\]
A.\[(P):x - 2y + 3z - 2 = 0\]
B. \[(P):x - 2y + 3z + 2 = 0\]
C. \[(P):x + 2y - 3z = 0\]
D. \[(P):x - 2y - 3z + 4 = 0\]
A.\[4x + 2y - 7z - 1 = 0\]
B. \[4x - 2y + 7z - 7 = 0\]
C. \[4x + 2y + 7z - 15 = 0\]
D. \[4x + 2y + 7z + 15 = 0\]
A. \(\left\{ {\begin{array}{*{20}{c}}{x = 5 + 6t}\\{y = - 3t}\\{z = 4t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 3t}\\{y = 3 + t}\\{z = 4 - t}\end{array}} \right.\)
C. \[\frac{{x + 1}}{6} = \frac{{y - 3}}{2} = \frac{{z + 4}}{4}\]
D. \[\frac{{x + 1}}{6} = \frac{{y - 3}}{{ - 5}} = \frac{{z + 4}}{4}\]
A.135
B.105
C.108
D.145
A.(1;0;0).
B.(0;−5;3).
C.(0;3;−5).
D.(0;−3;1).
A.\(\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = - 2 + 4t}\\{z = 2 - t}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = 2 + 4t}\\{z = 5 - t}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = 11 + 4t}\\{z = 2 - t}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{x = - 4}\\{y = - 7 + 4t}\\{z = - t}\end{array}} \right.\)
A.4.
B.0.
C.2.
D.1.
A.\[3x - 2y + 13z - 56 = 0\]
B. \[3x + 2y + 13z - 56 = 0\]
C. \[3x + 2y + 13z + 56 = 0\]
D. \[3x - 2y - 13z + 56 = 0\]
A.\[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{1}\]
B. \[\frac{{x - 1}}{1} = \frac{{y + 3}}{{ - 2}} = \frac{{z + 2}}{1}\]
C. \[\frac{{x - 1}}{1} = \frac{{y + 3}}{{ - 2}} = \frac{{z + 2}}{4}\]
D. \[\frac{{x + 1}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 2}}{4}\]
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAP247