A.\[\frac{{x + 3}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}\]
B. \[\frac{{x - 2}}{{ - 2}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\]
C. \[\frac{{x + 5}}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 1}}\]
D. \[\frac{x}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{1}\]
Đường thẳng d đi qua A(1;3;1) và có VTCP\[\overrightarrow {{u_d}} = \left( { - 3;2; - 2} \right)\]
Mặt phẳng (Q) chứa d và vuông góc với (P) nên \[\overrightarrow {{n_Q}} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right]\]
Ta có:\[\overrightarrow {{n_P}} = \left( {1; - 3;1} \right)\] và\[\overrightarrow {{u_d}} = \left( { - 3;2; - 2} \right) \Rightarrow \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {4; - 1; - 7} \right)\]
Mặt phẳng (Q) đi qua A(1;3;1) và nhận\[\overrightarrow {{n_Q}} = \left( {4; - 1; - 7} \right)\]làm VTPT nên
\[\left( Q \right):4\left( {x - 1} \right) - \left( {y - 3} \right) - 7\left( {z - 1} \right) = 0 \Leftrightarrow 4x - y - 7z + 6 = 0\]
Đường thẳng cần tìm là giao tuyến của (P),(Q).
Dễ thấy điểm (0;−1;1) thuộc cả hai mặt phẳng và\[\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] = \left( {2;1;1} \right)\]
Do đó d′ đi qua A(0;−1;1) và có VTCP\[\overrightarrow {{u_{d'}}} = \left( {2;1;1} \right)\]
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247