A.(1;0;0).
B.(0;−5;3).
C.(0;3;−5).
D.(0;−3;1).
Gọi\[N = d \cap {\rm{\Delta }}\]. Giả sử\[N\left( {2 - 2t;\,\,8 + t;\,\,t} \right) \Rightarrow \overrightarrow {MN} = \left( { - 2t;\,\,7 + t;\,\,t - 1} \right)\]
Đường thẳng\[{\rm{\Delta }}:\,\,\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\] có 1 VTCP là\[\overrightarrow {{u_{\rm{\Delta }}}} = \left( { - 2;1;1} \right)\] đường thẳng d nhận\[\overrightarrow {MN} \] là 1 VTPT.
Do\[d \bot {\rm{\Delta }}\] nên\[\overrightarrow {MN} .\overrightarrow {{u_{\rm{\Delta }}}} = 0\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow - 2t.\left( { - 2} \right) + \left( {7 + t} \right).1 + \left( {t - 1} \right).1 = 0}\\{ \Leftrightarrow 6t + 6 = 0 \Leftrightarrow t = - 1}\\{ \Rightarrow \overrightarrow {MN} = \left( {2;6; - 2} \right)}\end{array}\]
⇒ Đường thẳng dd đi qua M(2;1;1) và có 1 VTCP\[\overrightarrow {{u_d}} = \frac{1}{2}\overrightarrow {MN} = \left( {1;3; - 1} \right)\] có phương trình là:\(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t'}\\{y = 1 + 3t'}\\{z = 1 - t'}\end{array}} \right.\)
Khi đó, giao điểm của d và mặt phẳng (Oyz) ứng với t′ thỏa mãn
\[x = 2 + t' = 0 \Leftrightarrow t' = - 2\]
⇒ Tọa độ giao điểm của d và mặt phẳng (Oyz) là: (0;−5;3).
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247