A.4.
B.0.
C.2.
D.1.
Vì \[M \in d:\,\,\frac{x}{{ - 2}} = \frac{{y - 1}}{1} = \frac{z}{1} \Rightarrow \] Gọi\[M\left( { - 2t;\,\,1 + t;\,\,t} \right)\]
Ta có:\[OM = \sqrt {{{\left( { - 2t} \right)}^2} + {{\left( {1 + t} \right)}^2} + {t^2}} = \sqrt {6{t^2} + 2t + 1} \]
\[d\left( {M;\left( P \right)} \right) = \frac{{\left| {2\left( { - 2t} \right) - \left( {1 + t} \right) + 2t - 2} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{{\left| { - 3t - 3} \right|}}{3} = \left| {t + 1} \right|\]
Theo bài ra ta có: M cách đều gốc tọa độ O và mặt phẳng (P)\[ \Leftrightarrow \sqrt {6{t^2} + 2t + 1} = \left| {t + 1} \right|\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow 6{t^2} + 2t + 1 = {t^2} + 2t + 1}\\{ \Leftrightarrow 5{t^2} = 0 \Leftrightarrow t = 0}\end{array}\]
\[ \Rightarrow M\left( {0;1;0} \right)\]
Vậy có 1 điểm M thỏa mãn yêu cầu bài toán là M(0;1;0).
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247